69 research outputs found

    Field research 2004

    Get PDF

    Field research 2001

    Get PDF

    Field research 2003

    Get PDF

    Yield and nutritional quality of nine summer annual forages

    Get PDF
    Nine summer annual forages were studied to evaluate yield and nutritional quality differences resulting from forage type and cultivar when cut at two stages of maturity. Substantial dry matter yield and quality differences were observed among the six hybrid pearl millets tested. Several hybrid pearl millets gave comparable dry matter yields to the sorghum-sudans at boot and headed stages of growth. Hybrid pearl millets were much higher in crude protein than the hybrid sorghum-sudans and sudangrass. Although yield increased markedly between boot and headed cutting stages, nutritional value declined greatly. Nitrate levels were excessively high in all forages when harvested at the boot stage in July, and several were still above safe levels at the headed stage. Therefore, nitrate and feed quality testing is recommended for safe and efficient utilization of summer annual forages

    Irrigation and drainage in the new millennium

    Get PDF
    Presented at the 2000 USCID international conference, Challenges facing irrigation and drainage in the new millennium on June 20-24 in Fort Collins, Colorado.Irrigation scheduling has been promoted as management tool to minimize irrigation water application, however, few irrigators regularly followed any rigorous scheduling methodology. Kansas State University Research and Extension in conjunction with an irrigation association, Water PACK, began a long-term project to promote ET based irrigation scheduling and other management technology. Area irrigators serve as the focal point of the project and over time have been asked to assume responsibility of scheduling the project fields. A long-term commitment and on-farm activities such as variable water application tests and center pivot uniformity tests seems to have generated confidence and acceptance of ET-based irrigation scheduling

    Adolescent brain maturation and cortical folding: evidence for reductions in gyrification

    Get PDF
    Evidence from anatomical and functional imaging studies have highlighted major modifications of cortical circuits during adolescence. These include reductions of gray matter (GM), increases in the myelination of cortico-cortical connections and changes in the architecture of large-scale cortical networks. It is currently unclear, however, how the ongoing developmental processes impact upon the folding of the cerebral cortex and how changes in gyrification relate to maturation of GM/WM-volume, thickness and surface area. In the current study, we acquired high-resolution (3 Tesla) magnetic resonance imaging (MRI) data from 79 healthy subjects (34 males and 45 females) between the ages of 12 and 23 years and performed whole brain analysis of cortical folding patterns with the gyrification index (GI). In addition to GI-values, we obtained estimates of cortical thickness, surface area, GM and white matter (WM) volume which permitted correlations with changes in gyrification. Our data show pronounced and widespread reductions in GI-values during adolescence in several cortical regions which include precentral, temporal and frontal areas. Decreases in gyrification overlap only partially with changes in the thickness, volume and surface of GM and were characterized overall by a linear developmental trajectory. Our data suggest that the observed reductions in GI-values represent an additional, important modification of the cerebral cortex during late brain maturation which may be related to cognitive development

    Detection of Epileptogenic Cortical Malformations with Surface-Based MRI Morphometry

    Get PDF
    Magnetic resonance imaging has revolutionized the detection of structural abnormalities in patients with epilepsy. However, many focal abnormalities remain undetected in routine visual inspection. Here we use an automated, surface-based method for quantifying morphometric features related to epileptogenic cortical malformations to detect abnormal cortical thickness and blurred gray-white matter boundaries. Using MRI morphometry at 3T with surface-based spherical averaging techniques that precisely align anatomical structures between individual brains, we compared single patients with known lesions to a large normal control group to detect clusters of abnormal cortical thickness, gray-white matter contrast, local gyrification, sulcal depth, jacobian distance and curvature. To assess the effects of threshold and smoothing on detection sensitivity and specificity, we systematically varied these parameters with different thresholds and smoothing levels. To test the effectiveness of the technique to detect lesions of epileptogenic character, we compared the detected structural abnormalities to expert-tracings, intracranial EEG, pathology and surgical outcome in a homogeneous patient sample. With optimal parameters and by combining thickness and GWC, the surface-based detection method identified 92% of cortical lesions (sensitivity) with few false positives (96% specificity), successfully discriminating patients from controls 94% of the time. The detected structural abnormalities were related to the seizure onset zones, abnormal histology and positive outcome in all surgical patients. However, the method failed to adequately describe lesion extent in most cases. Automated surface-based MRI morphometry, if used with optimized parameters, may be a valuable additional clinical tool to improve the detection of subtle or previously occult malformations and therefore could improve identification of patients with intractable focal epilepsy who may benefit from surgery

    Hippocampal volumes are important predictors for memory function in elderly women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Normal aging involves a decline in cognitive function that has been shown to correlate with volumetric change in the hippocampus, and with genetic variability in the APOE-gene. In the present study we utilize 3D MR imaging, genetic analysis and assessment of verbal memory function to investigate relationships between these factors in a sample of 170 healthy volunteers (age range 46–77 years).</p> <p>Methods</p> <p>Brain morphometric analysis was performed with the automated segmentation work-flow implemented in FreeSurfer. Genetic analysis of the APOE genotype was determined with polymerase chain reaction (PCR) on DNA from whole-blood. All individuals were subjected to extensive neuropsychological testing, including the California Verbal Learning Test-II (CVLT). To obtain robust and easily interpretable relationships between explanatory variables and verbal memory function we applied the recent method of conditional inference trees in addition to scatterplot matrices and simple pairwise linear least-squares regression analysis.</p> <p>Results</p> <p>APOE genotype had no significant impact on the CVLT results (scores on long delay free recall, CVLT-LD) or the ICV-normalized hippocampal volumes. Hippocampal volumes were found to decrease with age and a right-larger-than-left hippocampal asymmetry was also found. These findings are in accordance with previous studies. CVLT-LD score was shown to correlate with hippocampal volume. Multivariate conditional inference analysis showed that gender and left hippocampal volume largely dominated predictive values for CVLT-LD scores in our sample. Left hippocampal volume dominated predictive values for females but not for males. APOE genotype did not alter the model significantly, and age was only partly influencing the results.</p> <p>Conclusion</p> <p>Gender and left hippocampal volumes are main predictors for verbal memory function in normal aging. APOE genotype did not affect the results in any part of our analysis.</p
    • …
    corecore